Example: Solve $x^2 + 1 = 0$.

$$x^2 = -1$$

 $x = \pm \sqrt{-1}$ 7? what do we do?

To overcome the inability to solve this in the real number system, a COMPLEX NUMBER SYSTEM was created.

Complex Numbers

A complex number has both a REAL component and an IMAGINARY component.

A complex number is written in standard form as a + bi, where a is a *real part* and bi is the *imaginary part* (b alone is a real number).

Principal Square Roots of Negative Numbers

If a is a positive number, the principal square root of the negative number -a is defined as:

$$\sqrt{-a} = i\sqrt{a}$$
.

Examples: Write the complex number in standard form.

1.
$$\sqrt{-3}\sqrt{-12} = (i\sqrt{3})(i\sqrt{12}) = i^2\sqrt{3}b = 6i^2 = -6$$

2.
$$\sqrt{-48} - \sqrt{-27} = i\sqrt{48} - i\sqrt{27}$$

$$= 4i\sqrt{3} - 3i\sqrt{3} = i\sqrt{3}$$

Operations with Complex Numbers

Addition and Subtraction:

Examples:

1.
$$(4+7i)+(1-6i)=5+i$$

2.
$$(1+2i)-(4+2i)=-3$$

3.
$$3i-(-2+3i)-(2+5i)=$$

= $3i+3-3i-2-5i$
= $-5i$

4.
$$(3+2i)+(4-i)-(7+i)=$$

= $3+2i+1-i-1-i$
= 0

RECALL: $i^1 = i$ and $i^2 = -1$, so $i^3 = i \cdot i^2 = i \cdot (-1) = -i$ and $i^4 = i^2 \cdot i^2 = (-1)(-1) = 1$ Examples (Multiplying):

1.
$$4(-2+3i) = -8+12i$$

2.
$$(2-i)(4-3i)=8-6i-4i+3i^2$$

= $8-10i+3(-1)$
= $5-10i$

3.
$$(3+2i)(3-2i)=9-6i+6i-4i^2$$

= $9-4(-1)=13$

Solve the following equations.

1.
$$x^2 + 4 = 0$$

2.
$$3x^2-2x+5=0$$

$$\begin{array}{r} -2x+5=0 \\ \text{Poesn't factor'} \\ -b\pm\sqrt{b^2-4ac} = -(-2)\pm\sqrt{(-2)^2-4(3)(5)} \\ = 2\pm\sqrt{4-60} = 2\pm\sqrt{56} \\ = 2\pm\sqrt{10} \\ = 2\pm\sqrt{10}$$

Complex Conjugates

The conjugate of a complex number of the form a+bi is a-bi.

Example: Multiply 4-3i by its complex conjugate.

$$(4-3i)(4+3i)$$

= $16-12i+12i-9i^2$
= $)6+9=25$

Example: Write the quotient of the following complex number in standard form (a + bi).

$$\frac{2+3i}{4-2i} = \left(\frac{4+2i}{4+2i}\right) = \frac{8+4i+12i+6i^{2}}{16+8i-8i-4i^{2}}$$

$$= \frac{8+16i-6}{16+4} = \frac{2+16i}{20} = \frac{1}{10} + \frac{4i}{5}$$